Dynamic Energy Efficient Control of Induction Machines Using Anticipative Flux Templates

Author:

Dominic Antony,Schullerus GernotORCID,Winter Martin

Abstract

Energy efficiency optimization techniques for steady state operation of induction machines are the state-of-the-art, and many methods have already been developed. However, many real-world industrial and electric vehicle applications cannot be considered to be in steady state operation. The focus of this contribution is on the efficiency optimization of induction machines in dynamic operation. Online dynamic operation is challenging due to the computational complexity and the required low sample times in an inverter. An offline optimization is therefore conducted to gain knowledge. Based on this offline optimal solution, a simple and easy to implement template based solution is developed. This approach aims at replicating the solution found by the offline optimization by resembling the shape and anticipative characteristics of the optimal flux trajectory. The energy efficiency improvement of the template based solution is verified by simulations and measurements on a test bench and using a real-world drive cycle scenario. For comparison, a model predictive numerical online optimization is investigated too.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3