Abstract
Bio-based polymers have been considered as an alternative to oil-based materials for their “carbon-neutral” environmentally degrative features. However, degradation is a complex system in which environmental factors and preparation conditions are involved, and the relationship between degradation and these factors/conditions has not yet been clarified. Moreover, an efficient system that addresses multiple degradation factors has not been developed for practical use. Thus, we constructed a decomposition degree predictive model to explore degradation factors based on analytical data and experimental conditions. The predictive model was constructed by machine learning using a dataset. The objective variable was the molecular weight, and the explanatory variables were the moisture content in a compost environment, degradation period, degree of crystallinity pre-experiment, and features of solid-state nuclear magnetic resonance spectra. The good accuracy of this predictive model was confirmed by statistical variables. The moisture content in the compost environment was a critical factor for considering initial degradation; specific scores revealed the contribution of degradation factors. Furthermore, the optimum decomposition degree, various analytical values, and experimental conditions were predictable when this predictive model was combined with Bayesian optimization. Information obtained from virtual experiments is expected to promote the material design and development of bio-based plastics.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献