A Numerical Investigation of Laser Beam Welding of Stainless Steel Sheets with a Gap

Author:

Buttazzoni Michele,Zenz Constantin,Otto AndreasORCID,Gómez Vázquez Rodrigo,Liedl GerhardORCID,Arias Jorge Luis

Abstract

Keyhole laser beam welding (LBW) of 304L stainless steel sheets with a gap in between was numerically simulated with a three-dimensional, transient, multi-physical model for laser material processing based on the finite volume method (FVM). First, the model’s ability to reproduce experimental results on a relatively coarse computational mesh within reasonable computing time, so as to serve as process optimization tool, is presented. An example of process optimization is shown, wherein a given set of weld seam quality criteria is fulfilled by iteratively optimizing a secondary laser beam. The relatively coarse mesh, in combination with a good model calibration for the experimental conditions, allows for sufficiently fast simulations to use this approach for optimization tasks. Finally, using a finer spatial and temporal discretization, the dynamic processes in the vicinity of the keyhole leading to the formation of pores are investigated. The physical phenomena predicted by the simulation are coherent with experimental observations found in literature.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3