Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2

Author:

Souid Abdelbaki,Sakli Nizar,Sakli HediORCID

Abstract

Featured Application: The method presented in this paper can be applied in medical computer systems for supporting medical diagnosis.Abstract: Thoracic radiography (chest X-ray) is an inexpensive but effective and widely used medical imaging procedure. However, a lack of qualified radiologists severely limits the applicability of the technique. Even current Deep Learning-based approaches often require strong supervision, e.g., annotated bounding boxes, to train such systems, which is impossible to harvest on a large scale. In this work, we proposed the classification and prediction of lung pathologies of frontal thoracic X-rays using a modified model MobileNet V2. We considered using transfer learning with metadata leverage. We used the NIH Chest-Xray-14 database, and we did a comparison of performance of our approach to other state-of-the-art methods for pathology classification. The main comparison was by Area under the Receiver Operating Characteristic Curve (AUC) statistics and analyzed the differences between classifiers. Overall, we notice a considerable spread in the achieved result with an average AUC of 0.811 and an accuracy above 90%. We conclude that resampling the dataset gives a huge improvement to the model performance. In this work, we intended to create a model that is capable of being trained, and modified devices with low computing power because they can be implemented into smaller IoT devices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel CEFNet framework for lung disease detection and infection region identification;Biomedical Signal Processing and Control;2024-10

2. Impact of the Internet of Medical Things on Artificial Intelligence-enhanced medical imaging systems from 2019 to 2023;The Imaging Science Journal;2024-09-10

3. Chest X-ray Based Pulmonary Disease Classification Using Transfer Learning and CNN;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Evaluation of Machine/Deep Learning-Based Methods in Diagnosing Lung Diseases Using Radiographic Images;2024 10th International Conference on Web Research (ICWR);2024-04-24

5. Enhanced MobileNet Architecture with Residual Blocks for Improved CT Image Classification;2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST);2024-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3