Fabrication of a Porous Three-Dimensional Scaffold with Interconnected Flow Channels: Co-Cultured Liver Cells and In Vitro Hemocompatibility Assessment

Author:

Li Muxin,Khadim Rubina Rahaman,Nagayama Mitsuru,Shinohara Marie,Inamura Kousuke,Danoy Mathieu,Nishikawa Masaki,Furukawa Katsuko,Sakai Yasuyuki,Niino Toshiki

Abstract

The development of large-scale human liver scaffolds equipped with interconnected flow channels in three-dimensional space offers a promising strategy for the advancement of liver tissue engineering. Tissue-engineered scaffold must be blood-compatible to address the demand for clinical transplantable liver tissue. Here, we demonstrate the construction of 3-D macro scaffold with interconnected flow channels using the selective laser sintering (SLS) fabrication method. The accuracy of the printed flow channels was ensured by the incorporation of polyglycolic acid (PGA) microparticles as porogens over the conventional method of NaCl salt leaching. The fabricated scaffold was populated with Hep G2, followed by endothelization with endothelial cells (ECs) grown under perfusion of culture medium for up to 10 days. The EC covered scaffold was perfused with platelet-rich plasma for the assessment of hemocompatibility to examine its antiplatelet adhesion properties. Both Hep G2-covered scaffolds exhibited a markedly different albumin production, glucose metabolism and lactate production when compared to EC-Hep G2-covered scaffold. Most importantly, EC-Hep G2-covered scaffold retained the antiplatelet adhesion property associated with the perfusion of platelet-rich plasma through the construct. These results show the potential of fabricating a 3-D scaffold with interconnected flow channels, enabling the perfusion of whole blood and circumventing the limitation of blood compatibility for engineering transplantable liver tissue.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3