Development of 3D-Printed MWCNTs/AC/BNNTs Ternary Composite Electrode Material with High-Capacitance Performance

Author:

Alam AsrarORCID,Saeed Ghuzanfar,Hong Seong MinORCID,Lim SoomanORCID

Abstract

Activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) have been extensively investigated in recent decades as electrical double-layer capacitor (EDLC) electrode materials for supercapacitors, owing to their superior capacitive properties and cycling stability performance. However, in the modern electronics industry, ternary electrode materials have been designed to develop high-performance and efficient energy storage devices. EDLC-based ternary materials are of great importance, where all the present components participate both individually and as a multicomponent electrode system to promote high-electrochemical performance electrode materials. In this study, we have incorporated an optimized content of boron nitride nanotube (BNNT) powder into a binary material composed of AC and MWCNTs to enhance their electrochemical performance using a pneumatic printer. The printed MWCNTs/AC/BNNTs ternary composite electrode material has shown a maximum specific capacitance of 262 F g−1 at a minimum current density of 1 A g−1, with a capacitance retention of 49.61% at a maximum current density of 10 A g−1. These results demonstrate that the printable MWCNTs/AC/BNNTs ternary composite electrode material is a potential candidate for the development of high-performance supercapacitors.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3