Abstract
This article focuses on an underwater acoustic target recognition method based on target radiated noise. The difficulty of underwater acoustic target recognition is mainly the extraction of effective classification features and pattern classification. Traditional feature extraction methods based on Low Frequency Analysis Recording (LOFAR), Mel-Frequency Cepstral Coefficients (MFCC), Gammatone-Frequency Cepstral Coefficients (GFCC), etc. essentially compress data according to a certain pre-set model, artificially discarding part of the information in the data, and often losing information helpful for classification. This paper presents a target recognition method based on feature auto-encoding. This method takes the normalized frequency spectrum of the signal as input, uses a restricted Boltzmann machine to perform unsupervised automatic encoding of the data, extracts the deep data structure layer by layer, and classifies the acquired features through the BP neural network. This method was tested using actual ship radiated noise database, and the results show that proposed classification system has better recognition accuracy and adaptability than the hand-crafted feature extraction based method.
Funder
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献