Effect of Yb3+ on the Structural and Visible to Near-Infrared Wavelength Photoluminescence Properties in Sm3+-Yb3+-Codoped Barium Fluorotellurite Glasses

Author:

Kumi-Barimah EricORCID,Chen Yan,Tenwick Rebekah,Al-Murish Mohanad,Sherma Geeta,Jha Animesh

Abstract

We report on the Sm3+ and Sm3+:Yb3+-doped barium fluorotellurite glasses prepared using the conventional melting and quenching method. The spectroscopic characterisations were investigated with Raman and FTIR to evaluate the glasses’ structural and hydroxyl (-OH) content. The Raman analysis revealed a structural modification in the glass network upon adding and increasing the Yb3+ concentration from a TeO3 trigonal pyramid to a TeO4 trigonal bi-pyramid polyhedral. At the same time, the FTIR measurements showed the existence of -OH groups in the glass. Thus, under the current experimental conditions and nominal composition, the -OH group contents are too large to enable an effective removal. The near-infrared region of the absorption spectra is employed to determine the nephelauxetic ratio and bonding parameters. The average nephelauxetic ratio decreases, and the bonding parameter increases with the increasing Yb3+ content in the glasses. A room temperature visible and near-infrared photoluminescence ranging from 500 to 1500 nm in wavelength and decay properties were investigated for glasses doped with Sm3+ and Sm3+-Yb3+ by exciting them with 450 and 980 nm laser sources. Exciting the Sm3+- and Sm3+-Yb3+-doped glasses by 450 nm excitation reveals a new series of photoluminescence emissions at 1200, 1293, and 1418 nm, corresponding to the 6F11/2 state to the 6HJ (J = 7/2, 9/2, 11/2) transitions. Under the 976 nm laser excitation, a broad photoluminescence emission from 980 to 1200 nm was detected. A decay lifetime decreased from ~244 to ~43 μs by increasing the Yb3+ content, ascribing to concentration quenching and the OH content.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3