Abstract
In the present study, isothermal compression tests are conducted for a near-α Ti–3.3Al–1.5Zr–1.2Mo–0.6Ni titanium alloy at deformation temperatures ranging from 1073 K to 1293 K and strain rates ranging from 0.01 s−1 to 10 s−1 on a Gleeble-3500 thermomechanical compressor. The results show that, in the initial stage of the compression, the flow stress rapidly increases to a peak value because of elastic deformation, and then the alloy enters the plastic deformation stage and the flow stress slowly decreases with the increase in strain and tends to gradually stabilize. In the plastic deformation stage, the flow stress significantly decreases with the increase in the deformation temperature and the decrease in strain rate. A flow stress model considering the contribution of the strain is established, and the relative error between the calculated and the experimental values is 3.72%. The flow stress model has higher precision and can efficiently predict the flow behavior in the isothermal compression of the alloy. Furthermore, the processing map of the Ti–3.3Al–1.5Zr–1.2Mo–0.6Ni alloy is drawn. Based on the processing map, the influence of process parameters on power dissipation efficiency and stability parameters is analyzed, and the optimized hot working process parameters are pointed out.
Funder
the Key Science and Technology Research Project of Henan Province of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献