Abstract
Globally, there are several critical infrastructure networks (water and gas networks) whose disruption or destruction would significantly affect the maintenance of vital societal functions, such as the health, safety, security, and social or economic well-being of people. They would also have significant local, regional, and national impacts as a result of the inability to maintain those functions, and would have similar cross-border effects. The main objective of this article is to investigate by comparative numerical studies the structural response of three types of buried pipes made of different materials, primarily steel, concrete, and high-density polyethylene, resulting from the impact of the environment through exceptional external actions, such as explosions at the surface of the land in the vicinity of the laying areas. The dynamic transient analysis of the equation of motion with the application of the explicit integration procedure was performed with the ANSYS numerical simulation program. This study allows designers to solve complex problems related to the quality of the laying ground of water networks to canals. The knowledge accumulated gives us the possibility to correctly specify the optimal economic and technical value of the ratio between the laying depth of pipes and their diameter, the importance of the radius ratio of the pipe and the thickness of its wall, and, importantly, the improvement of the quality of the foundation ground. Following the results obtained, it is estimated that the optimal economic and technical value of the ratio between the laying depth of the pipes (H) and their diameter (D) is 3, regardless of the material from which the pipe is made.
Funder
Gheorghe Asachi Technical University of Iași
Subject
General Materials Science
Reference25 articles.
1. Dynamic Analysis of Subway Structures Under Blast Loading
2. Leaked Cables Offer Raw Look at U.S. Diplomacy, the New York Times, WikiLeaks Archivehttps://www.nytimes.com/2010/11/29/world/29cables.html
3. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
4. Impact and Explosion Structural Analysis and Design;Bangash,2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献