Superior Creep Resistance and Remnant Strength of Novel Tempered Ferritic-Martensitic Steels Designed by Element Addition

Author:

Wang Hang,Li Keer,Chen Wei,Han Lihong,Feng Yaorong

Abstract

The in situ combustion (ISC) technique is promisingly applied in heavy oil recovery, whereas the operation inevitably causes high temperature and high pressure for a long duration in the thermal recovery well. As a critical component, oil casing, traditionally made of plain carbon steel in China, generally suffers from poor creep resistance and degraded remnant strength under such a harsh environment, which leads to frequent casing damage and inferior recovery efficiency. In this study, a strategy was adopted to tackle the issue by adding chromium (Cr) element into the plain carbon steel. We designed two types of novel steel with the respective addition of 1 wt.% and 13 wt.% Cr element into plain carbon steel for oil casing. Surprisingly, the trace addition of Cr element with 1 wt.% effectively lowered the creep rate in a creep test at 600 °C and 400 MPa and maintained high remnant tensile strength after creep. More significantly, prior creep history dramatically enhanced remnant strength when Cr element was added up to 13 wt.%. After a long-term creep time of 96 h, the samples were conferred by a stress increment of ~92.5 MPa (~11.0%) relative to the creep-free counterparts, whereas the value was reduced by ~158.4 MPa (~17.8%) for plain carbon steel under the same deformation conditions. Such superior mechanical performances in the Cr-doped steels are mainly ascribed to precipitation retardation of carbides and sluggish precipitate coarsening, which continuously favors a precipitation–strengthening effect in steel. These findings provide a fundamental understanding of precipitation response and creep behaviors and, more importantly, enable the development of high-performance steels used in the field of unconventional petroleum and gas resources.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3