Author:
Song Yajiao,Yu Hongcui,Wang Xiaohui,Liu Jinglin,Liu Jinghai
Abstract
In this paper, we described a straightforward one-step chemical method for the synthesis of semiconductor quantum dots(QDs)—block copolymer brushes functionalized graphene oxide(GO) fluorescence nanohybrids. The azobenzene-terminated block copolymer poly(N-isopropylacrylamid)-b-poly(styrene-co-5-(2-methacryoylethyloxymethyl)-8-quinolinol)(PNIPAM-b-P(St-co-MQ)) was modified on the surface of GO sheets via host–guest interactions between β-cyclodextrin-modified GO and azobenzene moieties, and simultaneously CdSe/ZnS QDs were integrated on the block copolymer brushes through the coordination between 8-hydroxyquinoline units in the polymer brushes and CdSe/ZnS QDs. The resulting fluorescence nanohybrid exhibited dual photoluminescence at 620 nm and 526 nm, respectively, upon excitation at 380 nm and LCST-type thermo-responsive behavior which originated from the change in the PNIPAM conformation in the block copolymer brushes of GO sheets.
Subject
General Materials Science