Author:
Li Ying,He Changshu,Wei Jingxun,Zhang Zhiqiang,Tian Ni,Qin Gaowu,Zhao Xiang
Abstract
The fabricated Al–Zn–Mg–Cu alloy build has low mechanical properties due to the dissolution of strengthening precipitates back into the matrix during friction stir additive manufacturing (FSAM). Post-fabricated aging was considered an effective approach to improve the mechanical performance of the build. In this study, various post-fabricated aging treatments were applied in the underwater FSAM of Al–7.5 Zn–1.85 Mg–1.3 Cu–0.135 Zr alloy. The effect of the post-fabricated aging on the microstructure, microhardness, and local tensile properties of the build was investigated. The results indicated that over-aging occurred in the low hardness zone (LHZ) of the build after artificial aging at 120 °C for 24 h as the high density of grain boundaries, subgrain boundaries, dislocations, and Al3Zr particles facilitated the precipitation. Low-temperature aging treatment can effectively avoid the over-aging problem. After aging at 100 °C for 48 h, the average microhardness value of the build reached 178 HV; the yield strength of the LHZ and high hardness zone (HHZ) was 453 MPa and 463 MPa, respectively; and the ultimate tensile strength of the LHZ and HHZ increased to 504 MPa and 523 MPa, respectively.
Funder
the National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Liaoning Natural Science Foundation Project of China
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献