Effect of Post-Fabricated Aging on Microstructure and Mechanical Properties in Underwater Friction Stir Additive Manufacturing of Al–Zn–Mg–Cu Alloy

Author:

Li Ying,He Changshu,Wei Jingxun,Zhang Zhiqiang,Tian Ni,Qin Gaowu,Zhao Xiang

Abstract

The fabricated Al–Zn–Mg–Cu alloy build has low mechanical properties due to the dissolution of strengthening precipitates back into the matrix during friction stir additive manufacturing (FSAM). Post-fabricated aging was considered an effective approach to improve the mechanical performance of the build. In this study, various post-fabricated aging treatments were applied in the underwater FSAM of Al–7.5 Zn–1.85 Mg–1.3 Cu–0.135 Zr alloy. The effect of the post-fabricated aging on the microstructure, microhardness, and local tensile properties of the build was investigated. The results indicated that over-aging occurred in the low hardness zone (LHZ) of the build after artificial aging at 120 °C for 24 h as the high density of grain boundaries, subgrain boundaries, dislocations, and Al3Zr particles facilitated the precipitation. Low-temperature aging treatment can effectively avoid the over-aging problem. After aging at 100 °C for 48 h, the average microhardness value of the build reached 178 HV; the yield strength of the LHZ and high hardness zone (HHZ) was 453 MPa and 463 MPa, respectively; and the ultimate tensile strength of the LHZ and HHZ increased to 504 MPa and 523 MPa, respectively.

Funder

the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Liaoning Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3