Modified Coptic Cross Shaped Split-Ring Resonator Based Negative Permittivity Metamaterial for Quad Band Satellite Applications with High Effective Medium Ratio

Author:

Hossain Md BellalORCID,Faruque Mohammad Rashed IqbalORCID,Islam Mohammad TariqulORCID,Khandaker Mayeen UddinORCID,Tamam NissrenORCID,Sulieman AbdelmoneimORCID

Abstract

This research article describes a modified Coptic cross shaped split ring resonator (SRR) based metamaterial that exhibits a negative permittivity and refractive index with a permeability of nearly zero. The metamaterial unit cell consists of an SRR and modified Coptic cross shaped resonator providing quadruple resonance frequency at 2.02, 6.985, 9.985 and 14.425 GHz with the magnitude of −29.45, −25.44, −19.05, and −24.45 dB, respectively. The unit cell that was fabricated on a FR-4 substrate with a thickness of 1.6 mm has an electrical dimension of 0.074λ × 0.074λ; the wavelength (λ) is computed at the frequency of 2.02 GHz. The computer simulation technology (CST) microwave studio was employed to determine the scattering parameters and their effective medium properties, i.e., permittivity, permeability and refractive index, also calculated based on NRW (Nicolson–Ross–Weir) method through the implementation of MATLAB code. The frequency range of 2.02–2.995 GHz, 6.985–7.945 GHz, 9.985–10.6 GHz, and 14.425–15.445 GHz has been found for negative permittivity. An effective medium ratio (EMR) of 13.50 at 2.02 GHz shows that the proposed unit cell is compact and effective. The lumped component based equivalent circuit model is used to validate with simulation results. The proposed unit cell and its array were fabricated for experimental verification. The results show that the simulation result using CST and high-frequency structure simulator (HFSS) simulator, equivalent circuit model result using advanced design system (ADS) simulator and measurement results match each other better. Its near zero permeability, negative permittivity, negative refractive index, high EMR and simple unit cell design allow the proposed metamaterial to be used for S-, C-, X- and Ku-band satellite applications.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3