Abstract
Finding an optimal combination of features and classifier is still an open problem in the development of automatic heartbeat classification systems, especially when applications that involve resource-constrained devices are considered. In this paper, a novel study of the selection of informative features and the use of a random forest classifier while following the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) and an inter-patient division of datasets is presented. Features were selected using a filter method based on the mutual information ranking criterion on the training set. Results showed that normalized beat-to-beat (R–R) intervals and features relative to the width of the ventricular depolarization waves (QRS complex) are the most discriminative among those considered. The best results achieved on the MIT-BIH Arrhythmia Database were an overall accuracy of 96.14% and F1-scores of 97.97%, 73.06%, and 90.85% in the classification of normal beats, supraventricular ectopic beats, and ventricular ectopic beats, respectively. In comparison with other state-of-the-art approaches tested under similar constraints, this work represents one of the highest performances reported to date while relying on a very small feature vector.
Funder
Regione Autonoma della Sardegna
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献