Abstract
Gene expression and phytohormone contents were measured in response to elevating ascorbate in the absence of other confounding stimuli such as high light and abiotic stresses. Young Arabidopsis plants were treated with 25 mM solutions of l-galactose pathway intermediates l-galactose (l-gal) or l-galactono-1,4-lactone (l-galL), as well as L-ascorbic acid (AsA), with 25 mM glucose used as control. Feeding increased rosette AsA 2- to 4-fold but there was little change in AsA biosynthetic gene transcripts. Of the ascorbate recycling genes, only Dehydroascorbate reductase 1 expression was increased. Some known regulatory genes displayed increased expression and included ANAC019, ANAC072, ATHB12, ZAT10 and ZAT12. Investigation of the ANAC019/ANAC072/ATHB12 gene regulatory network revealed a high proportion of ABA regulated genes. Measurement of a subset of jasmonate, ABA, auxin (IAA) and salicylic acid compounds revealed consistent increases in ABA (up to 4.2-fold) and phaseic acid (PA; up to 5-fold), and less consistently certain jasmonates, IAA, but no change in salicylic acid levels. Increased ABA is likely due to increased transcripts for the ABA biosynthetic gene NCED3. There were also smaller increases in transcripts for transcription factors ATHB7, ERD1, and ABF3. These results provide insights into how increasing AsA content can mediate increased abiotic stress tolerance.
Funder
The New Zealand Institute for Plant and Food Research Ltd.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献