Acellular Dermal Matrix Used in Diabetic Foot Ulcers: Clinical Outcomes Supported by Biochemical and Histological Analyses

Author:

Campitiello Ferdinando,Mancone ManfrediORCID,Cammarota Marcella,D’Agostino Antonella,Ricci GiuliaORCID,Stellavato Antonietta,Della Corte Angela,Pirozzi Anna Virginia Adriana,Scialla Gianluca,Schiraldi ChiaraORCID,Canonico Silvestro

Abstract

Diabetic foot ulcer (DFU) is a diabetes complication which greatly impacts the patient’s quality of life, often leading to amputation of the affected limb unless there is a timely and adequate management of the patient. DFUs have a high economic impact for the national health system. Data have indeed shown that DFUs are a major cause of hospitalization for patients with diabetes. Based on that, DFUs represent a very important challenge for the national health system. Especially in developed countries diabetic patients are increasing at a very high rate and as expected, also the incidence of DFUs is increasing due to longevity of diabetic patients in the western population. Herein, the surgical approach focused on the targeted use of the acellular dermal matrix has been integrated with biochemical and morphological/histological analyses to obtain evidence-based information on the mechanisms underlying tissue regeneration. In this research report, the clinical results indicated decreased postoperative wound infection levels and a short healing time, with a sound regeneration of tissues. Here we demonstrate that the key biomarkers of wound healing process are activated at gene expression level and also synthesis of collagen I, collagen III and elastin is prompted and modulated within the 28-day period of observation. These analyses were run on five patients treated with Integra® sheet and five treated with the injectable matrix Integra® Flowable, for cavitary lesions. In fact, clinical evaluation of improved healing was, for the first time, supported by biochemical and histological analyses. For these reasons, the present work opens a new scenario in DFUs treatment and follow-up, laying the foundation for a tailored protocol towards complete healing in severe pathological conditions.

Funder

Integra LifeSciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3