Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Protect Cardiomyocytes from Doxorubicin-Induced Cardiomyopathy by Upregulating Survivin Expression via the miR-199a-3p-Akt-Sp1/p53 Signaling Pathway

Author:

Lee Ji Yoon,Chung Jihwa,Byun Yeongju,Kim Kyoung Hwa,An Shung Hyun,Kwon Kihwan

Abstract

Cardiotoxicity is associated with the long-term clinical application of doxorubicin (DOX) in cancer patients. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) including exosomes have been suggested for the treatment of various diseases, including ischemic diseases. However, the effects and functional mechanism of MSC-sEVs in DOX-induced cardiomyopathy have not been clarified. Here, MSC-sEVs were isolated from murine embryonic mesenchymal progenitor cell (C3H/10T1/2) culture media, using ultrafiltration. H9c2 cardiac myoblast cells were pretreated with MSC-sEVs and then exposed to DOX. For in vivo studies, male C57BL/6 mice were administered MSC-sEVs intravenously, prior to a single dose of DOX (15 mg/kg, intraperitoneal). The mice were sacrificed 14 days after DOX treatment. The results showed that MSC-sEVs protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX showed downregulation of both phosphorylated Akt and survivin, whereas the treatment of MSC-sEVs recovered expression, indicating their anti-apoptotic effects. Three microRNAs (miRNAs) (miR 199a-3p, miR 424-5p, and miR 21-5p) in MSC-sEVs regulated the Akt-Sp1/p53 signaling pathway in cardiomyocytes. Among them, miR 199a-3p was involved in regulating survivin expression, which correlated with the anti-apoptotic effects of MSC-sEVs. In in vivo studies, the echocardiographic results showed that the group treated with MSC-sEVs recovered from DOX-induced cardiomyopathy, showing improvement of both the left ventricle fraction and ejection fraction. MSC-sEVs treatment also increased both survivin and B-cell lymphoma 2 expression in heart tissue compared to the DOX group. Our results demonstrate that MSC-sEVs have protective effects against DOX-induced cardiomyopathy by upregulating survivin expression, which is mediated by the regulation of Akt activation by miRNAs in MSC-sEVs. Thus, MSC-sEVs may be a novel therapy for the prevention of DOX-induced cardiomyopathy.

Funder

National Research Foundation of Korea

Korea Tech Incubator Program for Startup

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3