Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing

Author:

Ding Shenzhen,Chen XumeiORCID,Yu Lei,Wang Xu

Abstract

The effective setting of offsets between intersections on arterial roads can greatly reduce the travel time of vehicles through intersections. However, coordinated control systems of urban arterial roads often do not achieve the desired effect. On the contrary, they are very likely to increase the traffic congestion on arterial roads, resulting in more delays of the platoon with more exhaust emissions, if the coordinated control system does not have effective settings. Meanwhile, taking into account increasing environmental pollution, measures are needed to solve the conflict between environmental and traffic management. Thus, in order to ensure the smooth flow of urban arterial roads while considering the environment, this paper develops a bi-objective offset optimization model, with reducing delays of the platoon on arterial roads as the primary objective, and reducing exhaust emissions as the secondary objective. The proposed bi-objective model is based on the division of platoon operating modes on arterial roads, and more pollutant types, including NOx, HC, and CO, are considered when measuring environmental impact. Further, the modified hierarchical method, combining the branch and bound approach with the introductions of a relaxation coefficient, is employed to solve the model. By introducing a relaxation coefficient, the modified hierarchical method overcomes the defects of the traditional one. Finally, Xi Dajie Road in Beijing was taken as an example. The results showed that the bi-objective offset optimization model, considering both the delays and emissions of the platoon reduced delays by up to 20% and emissions by 7% compared with the existing timing plan. If compared with the offset optimization model considering delays only, such a model increases delays no more than 3% and reduces emissions by 6%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Traffic Control Systems Handbook,2005

2. Impact of Automobile Vehicles Exhaust Emissions on Metropolitan Air Quality: Analysis Study on the Air Pollution Change before and after the Spring Festival in Urumqi City, China;Guo;Acta Sci. Circumstantiae,2014

3. A study on Driving and Emission Features of Diesel Buses in Beijing Based on VSP Parameter;Hao;Automot. Eng.,2010

4. Validation of temporal and spatial consistency of facility- and speed-specific vehicle-specific power distributions for emission estimation: A case study in Beijing, China

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3