Constructal Macroscale Thermodynamic Model of Spherical Urban Greenhouse Form with Double Thermal Envelope within Heat Currents

Author:

Mavromatidis Lazaros

Abstract

Urban agriculture is becoming a timely environmental friendly practice to strengthen cities’ resilience to climate change. However, there is a lack of academic literature regarding the thermodynamic potential of interior urban agriculture. Furthermore, there is always a need to develop, from scratch, an updated methodological approach that aims to assist architects of conceiving such specific thermodynamically complex interior environments. In this paper, urban space is identified as a ‘flow system’, and Bejan’s constructal law of generation of flow structure is used to morph and discover the system flow architecture that offers greater global performance (greater access to what flows). More precisely, a macroscale thermodynamic model of spherical urban greenhouse form with double thermal envelope has been developed while the methodological approach resulted in the definition of a decisional flowchart that can be reproduced by other researchers. On the basis of this macroscale constructal model, the present paper proposes reduced models that link thermodynamic and geometric parameters in an accurate manner and can be used at early design stages for pedagogic and qualitative optimization purposes, integrating urban farming to architectural programming.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3