Investigation of Hydraulic Performance Based on Response Surface Methodology for an Agricultural Chemigation Proportional Injector

Author:

Tang Pan,Chen Chao,Li Hong

Abstract

Injectors are key pieces of equipment for chemigation systems, and their hydraulic performance has a significant effect on chemigation systems and crops. In order to investigate the influence of different working parameters on hydraulic performance for a water-powered proportional injector (PI), three key parameters of inlet and injection flow rate were researched using a one-factor experimental design method. The regression equations between different factors and response variables were established through a response surface method based on one-factor experimental results. Lastly, a mathematical model of the actual injection ratio was established. Some experiments under different, randomly selected parameter combinations were carried out to verify the prediction precision of the mathematical mode. The results showed that the injection flow rate increased first within the differential pressure of 0.05 to 0.10 MPa and then tended towards stability with increasing differential pressure. The injection flow rate decreased by increasing the viscosity and the change in the injection flow rate was small enough when the viscosity was greater than 500 mPa·s. The impact factors, in order of significance, for inlet flow rate were differential pressure, viscosity of injection liquid and setting injection ratio. The impact factors, in order of significance, for injection flow rate were viscosity of injection liquid, setting injection ratio and differential pressure. The regressive model for predicting the actual injection ratio was validated using an experiment and the relative deviation between calculated value and tested value was less than 5.98%, which indicated that the mathematical model had high credibility.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference36 articles.

1. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems

2. Effect of solution concentration on fertigation uniformity of impact sprinkler;Tu;J. Drain. Irrig. Mach. Eng.,2020

3. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato

4. Prospects for development of water saving irrigation equipment and technology in China;Li;J. Drain. Irrig. Mach. Eng.,2020

5. DRIP CHEMIGATION OF IMIDACLOPRID UNDER PLASTIC MULCH INCREASED YIELD AND DECREASED LEACHING CAUSED BY RAINFALL

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3