Abstract
Aiming at addressing the issues related to the tuning of loop closure detection parameters for indoor 2D graph-based simultaneous localization and mapping (SLAM), this article proposes a multi-objective optimization method for these parameters. The proposed method unifies the Karto SLAM algorithm, an efficient evaluation approach for map quality with three quantitative metrics, and a multi-objective optimization algorithm. More particularly, the evaluation metrics, i.e., the proportion of occupied grids, the number of corners and the amount of enclosed areas, can reflect the errors such as overlaps, blurring and misalignment when mapping nested loops, even in the absence of ground truth. The proposed method has been implemented and validated by testing on four datasets and two real-world environments. For all these tests, the map quality can be improved using the proposed method. Only loop closure detection parameters have been considered in this article, but the proposed evaluation metrics and optimization method have potential applications in the automatic tuning of other SLAM parameters to improve the map quality.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献