A Study to Enhance the Nitrate-Nitrogen Removal Rate without Dismantling the NF Module by Building a PFSA Ionomer-Coated NF Module

Author:

Park In-KeeORCID,Hou JianORCID,Yun JaehanORCID,Lee Hee-Dae,Lee Chang-HyunORCID

Abstract

Water resource pollution by nitrate-nitrogen, mainly caused by anthropogenic causes, induces eutrophication of water resources, and indicates the degree of organic pollution. Therefore, this study devised a method for coating PFSA ionomer with excellent chemical resistance without disassembling the module to improve the removal rate of nitrate-nitrogen in water by using a cyclic coating method on a commercially available nanofiltration membrane (NF membrane) module. Nafion was prepared as a supercritical fluid dispersion using a high-temperature and high-pressure reactor, and the particle size and the degree of dispersion of the dispersion were analyzed by DLS. The crystallinity was confirmed through XRD by drying the dispersion in the liquid state. After the dispersion was prepared as a membrane according to the heat treatment conditions, the characteristics according to the particle size were analyzed by tensile strength and TEM. The nitrate-nitrogen removal rate of the NF membrane module coated with the dispersion was increased by 93% compared to that before coating. Therefore, the result showed that the cycle coating method devised in this study could efficiently coat the already commercialized module and improve performance.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3