Multiparameter Neural Network Modeling of Facilitated Transport Mixed Matrix Membranes for Carbon Dioxide Removal

Author:

Nasir Rizwan,Suleman HumbulORCID,Maqsood Khuram

Abstract

Membranes for carbon capture have improved significantly with various promoters such as amines and fillers that enhance their overall permeance and selectivity toward a certain particular gas. They require nominal energy input and can achieve bulk separations with lower capital investment. The results of an experiment-based membrane study can be suitably extended for techno-economic analysis and simulation studies, if its process parameters are interconnected to various membrane performance indicators such as permeance for different gases and their selectivity. The conventional modelling approaches for membranes cannot interconnect desired values into a single model. Therefore, such models can be suitably applicable to a particular parameter but would fail for another process parameter. With the help of artificial neural networks, the current study connects the concentrations of various membrane materials (polymer, amine, and filler) and the partial pressures of carbon dioxide and methane to simultaneously correlate three desired outputs in a single model: CO2 permeance, CH4 permeance, and CO2/CH4 selectivity. These parameters help predict membrane performance and guide secondary parameters such as membrane life, efficiency, and product purity. The model results agree with the experimental values for a selected membrane, with an average absolute relative error of 6.1%, 4.2%, and 3.2% for CO2 permeance, CH4 permeance, and CO2/CH4 selectivity, respectively. The results indicate that the model can predict values at other membrane development conditions.

Funder

Deanship of Scientific Research, University of Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3