Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments

Author:

Ho Chii-Dong1ORCID,Wang Yi-Wun1ORCID,Chao Yi1,Chew Thiam Leng23ORCID,Jiang Ming-Shen1,Chen Jian-Har1,Li Ching-Yu1

Affiliation:

1. Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan

2. Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia

3. CO2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia

Abstract

Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters were implemented into the flow channel of direct contact membrane distillation (DCMD) modules to augment the permeate flux improvement in the present study. Attempts to reduce the disadvantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in improving pure water productivity, in which both heat- and mass-transfer boundary layers were diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The temperature polarization coefficient ttemp was studied and found to enhance device performance (less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with inserted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the mathematical modeling equations and were conducted experimentally with various design and operating parameters. The theoretical predictions and experimental results exhibited a great potential to considerably achieve permeate flux enhancement in the new design of the DCMD system. The DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations in comparisons with the module of using the empty channel. An economic consideration on both permeate flux enhancement and power consumption increment for the module with inserted S-ribs carbon-fiber filaments was also delineated.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3