Solvent-Free and Scalable Procedure to Prepare PYR13TFSI/LiTFSI/PVDF–HFP Thermoplastic Electrolytes with Controlled Phase Separation and Enhanced Li Ion Diffusion

Author:

Gregorio Víctor,García NuriaORCID,Tiemblo PilarORCID

Abstract

Solid electrolytes for Li transport have been prepared by melt-compounding in one single step. Electrolytes are composed of polyvinylidene fluoride–hexafluoropropylene (PVDF–HFP) with PYR13TFSI on its own or with varying concentration of LiTFSI. While the extrusion of PVDF–HFP with PYR13TFSI is possible up to relatively high liquid fractions, the compatibility of PVDF–HFP with LiTFSI/PYR13TFSI solutions is much lower. An organo-modified sepiolite with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS-S) can be used to enhance the compatibility of these blends and allows to prepare homogeneous PYR13TFSI/LiTFSI/PVDF–HFP electrolytes with controlled microphase separations by melt-compounding. The structure and morphology of the electrolytes has been studied by FTIR, differential scanning calorimetry (DSC), SEM, and AFM. Their mechanical properties have been studied by classical strain–stress experiments. Finally, ionic conductivity has been studied in the −50 to 90 °C temperature range and in diffusivity at 25 °C by PFG-NMR. These electrolytes prove to have a microphase-separated morphology and ionic conductivity which depends mainly on their composition, and a mechanical behavior typical of common thermoplastic polymers, which makes them very easy to handle. Then, in this solvent-free and scalable fashion, it is possible to prepare electrolytes like those prepared by solvent casting, but in few minutes instead of several hours or days, without solvent evaporation steps, and with ionic conductivities, which are very similar for the same compositions, above 0.1 mS·cm−1 at 25 °C. In addition, some of the electrolytes have been prepared with high concentration of Li ion, what has allowed the anion exchange Li transport mechanism to contribute significantly to the overall Li diffusivity, making DLi become similar and even clearly greater than DTFSI.

Funder

Spanish Ministry

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3