Self-Phosphorylated Polybenzimidazole: An Environmentally Friendly and Economical Approach for Hydrogen/Air High-Temperature Polymer-Electrolyte Membrane Fuel Cells

Author:

Ponomarev Igor I.1ORCID,Razorenov Dmitry Y.1,Skupov Kirill M.1ORCID,Ponomarev Ivan I.1,Volkova Yulia A.1,Lyssenko Konstantin A.2ORCID,Lysova Anna A.3ORCID,Vtyurina Elizaveta S.1ORCID,Buzin Mikhail I.1,Klemenkova Zinaida S.1

Affiliation:

1. A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, Bld. 1, 119334 Moscow, Russia

2. Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1-3, 119991 Moscow, Russia

3. Kurnakov Institute of General and Inorganic Chemistry, Leninskii Prosp., 31, 119071 Moscow, Russia

Abstract

The development of phosphorylated polybenzimidazoles (PBI) for high-temperature polymer–electrolyte membrane (HT-PEM) fuel cells is a challenge and can lead to a significant increase in the efficiency and long-term operability of fuel cells of this type. In this work, high molecular weight film-forming pre-polymers based on N1,N5-bis(3-methoxyphenyl)-1,2,4,5-benzenetetramine and [1,1′-biphenyl]-4,4′-dicarbonyl dichloride were obtained by polyamidation at room temperature for the first time. During thermal cyclization at 330–370 °C, such polyamides form N-methoxyphenyl substituted polybenzimidazoles for use as a proton-conducting membrane after doping by phosphoric acid for H2/air HT-PEM fuel cells. During operation in a membrane electrode assembly at 160–180 °C, PBI self-phosphorylation occurs due to the substitution of methoxy-groups. As a result, proton conductivity increases sharply, reaching 100 mS/cm. At the same time, the current-voltage characteristics of the fuel cell significantly exceed the power indicators of the commercial BASF Celtec® P1000 MEA. The achieved peak power is 680 mW/cm2 at 180 °C. The developed approach to the creation of effective self-phosphorylating PBI membranes can significantly reduce their cost and ensure the environmental friendliness of their production.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3