Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model

Author:

Gong Myungkeun1,Jin Changhyun1,Na Youngseung1ORCID

Affiliation:

1. Department of Mechanical and Information Engineering, University of Seoul, Seoul 02504, Republic of Korea

Abstract

Extensive research has been conducted over the past few decades on carbon-free hydrogen energy. Hydrogen, being an abundant energy source, requires high-pressure compression for storage and transportation due to its low volumetric density. Mechanical and electrochemical compression are two common methods used to compress hydrogen under high pressure. Mechanical compressors can potentially cause contamination due to the lubricating oil when compressing hydrogen, whereas electrochemical hydrogen compressors (EHCs) can produce high-purity, high-pressure hydrogen without any moving parts. A study was conducted using a 3D single-channel EHC model focusing on the water content and area-specific resistance of the membrane under various temperature, relative humidity, and gas diffusion layer (GDL) porosity conditions. Numerical analysis demonstrated that the higher the operating temperature, the higher the water content in the membrane. This is because the saturation vapor pressure increases with higher temperatures. When dry hydrogen is supplied to a sufficiently humidified membrane, the actual water vapor pressure decreases, leading to an increase in the membrane’s area-specific resistance. Furthermore, with a low GDL porosity, the viscous resistance increases, hindering the smooth supply of humidified hydrogen to the membrane. Through a transient analysis of an EHC, favorable operating conditions for rapidly hydrating membranes were identified.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3