Novel PVDF-PEG-CaCO3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment

Author:

Szwast MaciejORCID,Polak DanielORCID,Arciszewska Wiktoria,Zielińska Izabela

Abstract

In the aquatic environment, substances of pharmacological origin are common contaminants. The difficulty of removing them from water is a problem for the implementation of a circular economy policy. When recycling water, an effort should be made to remove, or at least, minimize the presence of these substances in the water. Porous membranes with a new functionality consisting in their adsorption capacity towards pharmaceutical substances have been developed. A Polyvinylidene Fluoride (PVDF) membrane with Calcium Carbonate (CaCO3) nanoparticles as an adsorbent was prepared. By implementing an integrated filtration-adsorption process using sulphadiazine, as a representative of pharmacological substances, 57 mg/m2 of adsorption capacity has been obtained, which is an improvement in adsorption properties of more than 50 times that of a commercial membrane. At the same time the membrane permeability is 0.29 m3/(h·m2·bar), which means that the membrane’s permeability was improved by 75%.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3