Separation Mechanisms and Anti-Fouling Properties of a Microporous Polyvinylidene Fluoride–Polyacrylic Acid–Graphene Oxide (PVDF-PAA-GO) Composite Membrane with Salt and Protein Solutions

Author:

Wang Li-Ting,Chen Yu-Han,Chang Wei-Ting,Kumar Selvaraj RajeshORCID,Chen Chien-ChangORCID,Lue Shingjiang JessieORCID

Abstract

This research demonstrates the preparation of composite membranes containing graphene oxide (GO) and investigates the separation mechanisms of various salts and bovine serum albumin (BSA) solutions. A microporous polyvinylidene fluoride–polyacrylic acid–GO (PVDF-PAA-GO) separation layer was fabricated on non-woven support. The GO-incorporating composite resulted in enlarged pore size (0.16 μm) compared with the control membrane (0.12 μm). The zeta potential of the GO composite was reduced to –31 from –19 mV. The resulting membranes with and without GO were examined for water permeability and rejection efficiency with single salt and BSA solutions. Using the non-woven/PVDF-PAA composite, the permeance values were 88–190 kg/m2hMPa, and the salt rejection coefficients were 9–28% for Na2SO4, MgCl2, MgSO4, and NaCl solutions. These salt removals were based on the Donnan exclusion mechanism considering the ion radii and membrane pore size. Incorporating GO into the separation layer exhibited limited impacts on the filtration of salt solutions, but significantly reduced BSA membrane adhesion and increased permeance. The negatively charged protein reached almost complete removal (98.4%) from the highly negatively charged GO-containing membrane. The GO additive improved the anti-fouling property of the composite membrane and enhanced BSA separation from the salt solution.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3