Mechanisms of Efficient Desalination by a Two-Dimensional Porous Nanosheet Prepared via Bottom-Up Assembly of Cucurbit[6]urils

Author:

Zhou Feng,Lee JaewooORCID,Wang RongORCID,Su HaibinORCID

Abstract

Many researchers have examined the desalination performance of various kinds of two-dimensional (2D) porous nanosheets prepared by top-down approaches such as forming pores on the plain based on molecular dynamics (MD) simulations. In contrast, it is rare to find MD simulations addressing the desalination performance of a 2D porous nanosheet prepared by bottom-up approaches. We investigated the desalination performance of a 2D porous nanosheet prepared by the assembly of cucurbit[6]uril (CB[6]) via MD simulation. The model 2D CB[6] nanosheet features CB[6] with the carbonyl-fringed portals of 3.9 Å and the interstitial space filled with hydrophobic linkers and dangling side chains. Our MD simulation demonstrated that the 2D porous CB[6] nanosheet possesses a 70 to 140 times higher water permeance than commercial reverse osmosis membranes while effectively preventing salt passage. The extremely high water permeance and perfect salt rejection stem from not only CB[6]’s nature (hydrophilicity, negative charge, and the right dimension for size exclusion) but also the hydrophobic and tightly filled interstitial space. We also double-checked that the extremely high water permeance was attributable to only CB[6]’s nature, not water leakage, by contrasting it with a 2D nanosheet comprising CB[6]-spermine complexes. Lastly, this paper provides a discussion on a better cucurbituril homologue to prepare a next-generation desalination membrane possessing great potential to such an extent to surpass the 2D porous CB[6] nanosheet based on quantum mechanics calculations.

Funder

Singapore National Research Foundation

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3