Molecular Characterization of Membrane Gas Separation under Very High Temperatures and Pressure: Single- and Mixed-Gas CO2/CH4 and CO2/N2 Permselectivities in Hybrid Networks

Author:

Neyertz SylvieORCID,Brown DavidORCID,Salimi SamanORCID,Radmanesh FarzanehORCID,Benes Nieck E.ORCID

Abstract

This work illustrates the potential of using atomistic molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations prior to experiments in order to pre-screen candidate membrane structures for gas separation, under harsh conditions of temperature and pressure. It compares at 300 °C and 400 °C the CO2/CH4 and CO2/N2 sieving properties of a series of hybrid networks based on inorganic silsesquioxanes hyper-cross-linked with small organic PMDA or 6FDA imides. The inorganic precursors are the octa(aminopropyl)silsesquioxane (POSS), which degrades above 300 °C, and the octa(aminophenyl)silsesquioxane (OAPS), which has three possible meta, para or ortho isomers and is expected to resist well above 400 °C. As such, the polyPOSS-imide networks were tested at 300 °C only, while the polyOAPS-imide networks were tested at both 300 °C and 400 °C. The feed gas pressure was set to 60 bar in all the simulations. The morphologies and densities of the pure model networks at 300 °C and 400 °C are strongly dependent on their precursors, with the amount of significant free volume ranging from ~2% to ~20%. Since measurements at high temperatures and pressures are difficult to carry out in a laboratory, six isomer-specific polyOAPS-imides and two polyPOSS-imides were simulated in order to assess their N2, CH4 and CO2 permselectivities under such harsh conditions. The models were first analyzed under single-gas conditions, but to be closer to the real processes, the networks that maintained CO2/CH4 and CO2/N2 ideal permselectivities above 2 were also tested with binary-gas 90%/10% CH4/CO2 and N2/CO2 feeds. At very high temperatures, the single-gas solubility coefficients vary in the same order as their critical temperatures, but the differences between the penetrants are attenuated and the plasticizing effect of CO2 is strongly reduced. The single-gas diffusion coefficients correlate well with the amount of available free volume in the matrices. Some OAPS-based networks exhibit a nanoporous behavior, while the others are less permeable and show higher ideal permselectivities. Four of the networks were further tested under mixed-gas conditions. The solubility coefficient improved for CO2, while the diffusion selectivity remained similar for the CO2/CH4 pair and disappeared for the CO2/N2 pair. The real separation factor is, thus, mostly governed by the solubility. Two polyOAPS-imide networks, i.e., the polyorthoOAPS-PMDA and the polymetaOAPS-6FDA, seem to be able to maintain their CO2/CH4 and CO2/N2 sieving abilities above 2 at 400 °C. These are outstanding performances for polymer-based membranes, and consequently, it is important to be able to produce isomer-specific polyOAPS-imides for use as gas separation membranes under harsh conditions.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3