Understanding Protein and Polysaccharide Fouling with Silicon Dioxide and Aluminum Oxide in Low-Pressure Membranes

Author:

Alresheedi Mohammad T.1

Affiliation:

1. Department of Civil Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia

Abstract

Humic, protein, and polysaccharide substances have been recognized as significant types of foulants in membrane systems. Despite the remarkable amount of research that has been performed on the interaction of these foulants, particularly humic and polysaccharide substances, with inorganic colloids in RO systems, little attention has been paid to the fouling and cleaning behavior of proteins with inorganic colloids in UF membranes. This research examined the fouling and cleaning behavior of bovine serum albumin (BSA) and sodium alginate (SA) with silicon dioxide (SiO2) and α-aluminum oxide (Al2O3) in individual and combined solutions during dead-end UF filtration. The results showed that the presence of SiO2 or Al2O3 in water alone did not cause significant fouling or a flux decline in the UF system. However, the combination of BSA and SA with inorganics was observed to have a synergistic effect on membrane fouling, in which the combined foulants caused higher irreversibility than individual foulants. Analysis of blocking laws demonstrated that the fouling mechanism shifted from cake filtration to complete pore blocking when the combined organics and inorganics were present in water, which resulted in higher BSA and SA fouling irreversibility. The results suggest that membrane backwash needs to be carefully designed and adjusted for better control of BSA and SA fouling with SiO2 and Al2O3.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3