Author:
Zuo Runzhang,Yu Yubin,Song Canhui,Liang Muxiang,Lu Xiejuan,Ren Dajun,Wu Xiaohui,Zan Feixiang
Abstract
Continual aeration, a fouling control strategy that causes high energy consumption, is the major obstacle in the deployment of membrane bioreactors (MBRs) for wastewater treatment. In recent years, a technology has been developed which adopts mechanical reciprocity for membrane vibration, and it has been proven efficient for membrane scouring, as well as for saving energy: the low-energy POREFLON non-aerated membrane bioreactor (LEP-N-MBR). In this study, a pilot-scale LEP-N-MBR system was designed, established, and operated at various frequencies and amplitudes, and with various membrane models, so as to evaluate energy usage and membrane fouling. The results showed that a slower TMP rise occurred when the frequency and amplitude were set to 0.5 Hz and 10 cm, respectively. Under a suitable frequency and amplitude, the TMP increasing rate of model B (sealed only with epoxy resin) was slower than that of model A (sealed with a combination of polyurethane and epoxy resin). The average specific energy demand (SED) of the LEP-N-MBR was 0.18 kWh·m−3, much lower than the aerated MBR with 0.43 kWh·m−3 (obtained from a previous study), indicating a significant decrease of 59.54% in the SED. However, the uneven distribution of sludge within the membrane tank indicated that the poor hydraulic mixing in the reactor may result in sludge accumulation, which requires further operational optimization. The findings of this pilot-scale study suggest that the LEP-N-MBR system is promising and effective for municipal wastewater treatment with a much lower level of energy usage. More research is needed to further optimize the operation of the LEP-N-MBR for wide application.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献