Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes

Author:

Zuo Runzhang,Yu Yubin,Song Canhui,Liang Muxiang,Lu Xiejuan,Ren Dajun,Wu Xiaohui,Zan Feixiang

Abstract

Continual aeration, a fouling control strategy that causes high energy consumption, is the major obstacle in the deployment of membrane bioreactors (MBRs) for wastewater treatment. In recent years, a technology has been developed which adopts mechanical reciprocity for membrane vibration, and it has been proven efficient for membrane scouring, as well as for saving energy: the low-energy POREFLON non-aerated membrane bioreactor (LEP-N-MBR). In this study, a pilot-scale LEP-N-MBR system was designed, established, and operated at various frequencies and amplitudes, and with various membrane models, so as to evaluate energy usage and membrane fouling. The results showed that a slower TMP rise occurred when the frequency and amplitude were set to 0.5 Hz and 10 cm, respectively. Under a suitable frequency and amplitude, the TMP increasing rate of model B (sealed only with epoxy resin) was slower than that of model A (sealed with a combination of polyurethane and epoxy resin). The average specific energy demand (SED) of the LEP-N-MBR was 0.18 kWh·m−3, much lower than the aerated MBR with 0.43 kWh·m−3 (obtained from a previous study), indicating a significant decrease of 59.54% in the SED. However, the uneven distribution of sludge within the membrane tank indicated that the poor hydraulic mixing in the reactor may result in sludge accumulation, which requires further operational optimization. The findings of this pilot-scale study suggest that the LEP-N-MBR system is promising and effective for municipal wastewater treatment with a much lower level of energy usage. More research is needed to further optimize the operation of the LEP-N-MBR for wide application.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3