Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood

Author:

Wójtowicz Dominika12,Stodolak-Zych Ewa1ORCID

Affiliation:

1. Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland

2. Clinical Department of Anaesthesiology and Intensive Care, University Hospital in Krakow, ul. Jakubowskiego 2, 30-688 Krakow, Poland

Abstract

An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is the formation of a biofilm. Protein, blood cells and bacterial cells attach to the membrane surface in complex and fluctuating processes. Anticoagulation allows for longer patency of vascular access and a longer lifespan of the membrane. Other preventive measures include the modification of the membrane itself. In this article, we focused on the role of nanoadditives in the mitigation of biofouling. Nanoparticles such as graphene, carbon nanotubes, and silica effectively change surface properties towards more hydrophilic, affect pore size and distribution, decrease protein adsorption and damage bacteria cells. As a result, membranes modified with nanoparticles show better flow parameters, longer lifespan and increased hemocompatibility.

Funder

AGH University of Science and Technology, Faculty of Materials Science and Ceramics

IDUB “Excellence initiative—research university” for the AGH University of Science and Technology

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3