A Molecular Model of PEMFC Catalyst Layer: Simulation on Reactant Transport and Thermal Conduction

Author:

Wang Wenkai,Qu Zhiguo,Wang Xueliang,Zhang Jianfei

Abstract

Minimizing platinum (Pt) loading while reserving high reaction efficiency in the catalyst layer (CL) has been confirmed as one of the key issues in improving the performance and application of proton exchange membrane fuel cells (PEMFCs). To enhance the reaction efficiency of Pt catalyst in CL, the interfacial interactions in the three-phase interface, i.e., carbon, Pt, and ionomer should be first clarified. In this study, a molecular model containing carbon, Pt, and ionomer compositions is built and the radial distribution functions (RDFs), diffusion coefficient, water cluster morphology, and thermal conductivity are investigated after the equilibrium molecular dynamics (MD) and nonequilibrium MD simulations. The results indicate that increasing water content improves water aggregation and cluster interconnection, both of which benefit the transport of oxygen and proton in the CL. The growing amount of ionomer promotes proton transport but generates additional resistance to oxygen. Both the increase of water and ionomer improve the thermal conductivity of the C. The above-mentioned findings are expected to help design catalyst layers with optimized Pt content and enhanced reaction efficiency, and further improve the performance of PEMFCs.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3