Palladium Membrane with High Density of Large-Angle Grain Boundaries to Promote Hydrogen Diffusivity

Author:

Hadjixenophontos EfiORCID,Mahmoudizadeh MasoudORCID,Rubin Michael,Ullmer Dirk,Razmjooei Fatemeh,Hanf Alexander C.ORCID,Brien Jan,Dittmeyer RolandORCID,Ansar Asif

Abstract

A higher density of large-angle grain boundaries in palladium membranes promotes hydrogen diffusion whereas small-angle grain boundaries suppress it. In this paper, the microstructure formation in 10 µm thick palladium membranes is tuned to achieve a submicronic grain size above 100 nm with a high density of large-angle grain boundaries. Moreover, changes in the grain boundaries’ structure is investigated after exposure to hydrogen at 300 and 500 °C. To attain large-angle grain boundaries in Pd, the coating was performed on yttria-stabilized zirconia/porous Crofer 22 APU substrates (intended for use later in an ultracompact membrane reactor). Two techniques of plasma sprayings were used: suspension plasma spraying using liquid nano-sized powder suspension and vacuum plasma spraying using microsized powder as feedstock. By controlling the process parameters in these two techniques, membranes with a comparable density of large-angle grain boundaries could be developed despite the differences in the fabrication methods and feedstocks. Analyses showed that a randomly oriented submicronic structure could be attained with a very similar grain sizes between 100 and 500 nm which could enhance hydrogen permeation. Exposure to hydrogen for 72 h at high temperatures revealed that the samples maintained their large-angle grain boundaries despite the increase in average grain size to around 536 and 720 nm for vacuum plasma spraying and suspension plasma spraying, respectively.

Funder

Arbeitsgemeinschaft industrieller Forschungsvereinigungen Otto von Guericke e.V.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3