Affiliation:
1. Centro de Bioinnovación, Facultad de Ciencias del mar y Recursos Biológicos, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
2. Departamento de Biotecnología, Universidad de Antofagasta, Avenida Universidad de Antofagasta, Antofagasta 1240000, Chile
Abstract
Biofouling refers to the undesirable growth of microorganisms on water-submerged surfaces. Microfouling, the initial state of biofouling, is characterized by aggregates of microbial cells enclosed in a matrix of extracellular polymeric substances (EPSs). In seawater desalination plants, filtration systems, such as reverse-osmosis membranes (ROMs), are affected by microfouling, which decreases their efficiency in obtaining permeate water. The existing chemical and physical treatments are expensive and ineffective; therefore, controlling microfouling on ROMs is a considerable challenge. Thus, new approaches are necessary to improve the current ROM cleaning treatments. This study demonstrates the application of Alteromonas sp. Ni1-LEM supernatant as a cleaning agent for ROMs in a desalination seawater plant in northern Chile (Aguas Antofagasta S.A.), which is responsible for supplying drinking water to the city of Antofagasta. ROMs treated with Altermonas sp. Ni1-LEM supernatant exhibited statistically significant results (p < 0.05) in terms of seawater permeability (Pi), permeability recovery (PR), and the conductivity of permeated water compared with control biofouling ROMs and those treated with the chemical cleaning protocol applied by the Aguas Antofagasta S.A. desalination plant.
Funder
Promotion of Scientific and Technological Development of the National Research and Development Agency
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献