Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes

Author:

Han YangORCID,Ho W. S. Winston

Abstract

A membrane-based system with a retentate recycle process in tandem with an enriching cascade was studied for >90% carbon capture from coal flue gas. A highly CO2-selective facilitated transport membrane (FTM) was utilized particularly to enhance the CO2 separation efficiency from the CO2-lean gases for a high capture degree. A techno-economic analysis showed that the retentate recycle process was advantageous for ≤90% capture owing to the reduced parasitic energy consumption and membrane area. At >90% capture, the enriching cascade outperformed the retentate recycle process since a higher feed-to-permeate pressure ratio could be applied. An overall 99% capture degree could be achieved by combining the two processes, which yielded a low capture cost of USD47.2/tonne, whereas that would be USD 42.0/tonne for 90% capture. This FTM-based approach for deep carbon capture and storage can direct air capture for the mitigation of carbon emissions in the energy sector.

Funder

US Department of Energy

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference48 articles.

1. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Report Number: IPCC SR1.5;Masson-Delmotte,2018

2. Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program

3. Capturing Carbon Dioxide from Air;Lackner,2001

4. Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity, Revision 3;Fout,2015

5. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 4;James,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3