Protein Profiling of Malaria-Derived Extracellular Vesicles Reveals Distinct Subtypes

Author:

Opadokun Tosin,Agyapong Jeffrey,Rohrbach PetraORCID

Abstract

Malaria is caused by obligate intracellular parasites belonging to the genus Plasmodium. Red blood cells (RBCs) infected with different stages of Plasmodium spp. release extracellular vesicles (EVs). Extensive studies have recently shown that these EVs are involved in key aspects of the parasite’s biology and disease pathogenesis. However, they are yet to be fully characterized. The blood stages of Plasmodium spp., namely the rings, trophozoites and schizonts, are phenotypically distinct, hence, may induce the release of characteristically different EVs from infected RBCs. To gain insights into the biology and biogenesis of malaria EVs, it is important to characterize their biophysical and biochemical properties. By differential centrifugation, we isolated EVs from in vitro cultures of RBCs infected with different stages of Plasmodium falciparum. We performed a preliminary characterization of these EVs and observed that important EV markers were differentially expressed in EVs with different sedimentation properties as well as across EVs released from ring-, trophozoite- or schizont-infected RBCs. Our findings show that RBCs infected with different stages of malaria parasites release EVs with distinct protein expression profiles.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference49 articles.

1. World Malaria Report 2021. Licence: CC BY-NC-SA 3.0 IGOhttps://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

2. Cerebral malaria

3. Severe Malaria

4. PfEMP1 – A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis

5. var genes, PfEMP1 and the human host

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3