Monte Carlo Simulations for the Estimation of the Effective Permeability of Mixed-Matrix Membranes

Author:

Cao Zheng,Kruczek Boguslaw,Thibault JulesORCID

Abstract

Recent years have seen the explosive development of mixed-matrix membranes (MMMs) for a myriad of applications. In gas separation, it is desired to concurrently enhance the permeability, selectivity and physicochemical properties of the membrane. To help achieving these objectives, experimental characterization and predictive models can be used synergistically. In this investigation, a Monte Carlo (MC) algorithm is proposed to rapidly and accurately estimate the relative permeability of ideal MMMs over a wide range of conditions. The difference in diffusivity coefficients between the polymer matrix and the filler particle is used to adjust the random progression of the migrating species inside each phase. The solubility coefficients of both phases at the polymer–filler interface are used to control the migration of molecules from one phase to the other in a way to achieve progressively phase equilibrium at the interface. Results for various MMMs were compared with the results obtained with the finite difference method under identical conditions, where the results from the finite difference method are used in this investigation as the benchmark method to test the accuracy of the Monte Carlo algorithm. Results were found to be very accurate (in general, <1% error) over a wide range of polymer and filler characteristics. The MC algorithm is simple and swift to implement and provides an accurate estimation of the relative permeability of ideal MMMs. The MC method can easily be extended to investigate more readily non-ideal MMMs with particle agglomeration, interfacial void, polymer-chain rigidification and/or pore blockage, and MMMs with any filler geometry.

Funder

Natural Science and Engineering Research Council (NSERC) Canada, Discovery Grant

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3