Flux Increase Occurring When an Ultrafiltration Membrane Is Flipped from a Normal to an Inverted Position—Experiments and Theory

Author:

Zoka Ladan,Khoo Ying SiewORCID,Lau Woei JyeORCID,Matsuura Takeshi,Narbaitz Roberto,Ismail Ahmad Fauzi

Abstract

The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) membrane and a ceramic ultrafiltration (UF) membrane was measured in the normal and inverted positions. Our experimental results showed that the PWF was two orders of magnitude higher when the PES membrane was flipped to the inverted position, while the increase was only two times for the ceramic membrane. The filtration experiments were also carried out using solutions of bovine serum albumin and poly(vinylpyrrolidone). A mathematical model was further developed to explain the PWF increase in the inverted position based on the Bernoulli’s rule, considering a straight cylindrical pore of small radius connected to a pore of larger radius in series. It was found by simulation that a PWF increase was indeed possible when the solid ceramic membrane was flipped, maintaining its pore geometry. The flow from a layer with larger pore size to a layer with smaller pore size occurred in the backwashing of the fouled membrane and in forward and pressure-retarded osmosis when the membrane was used with its active layer facing the draw solution (AL-DS). Therefore, this work is of practical significance for the cases where the direction of the water flow is in the inverted position of the membrane.

Funder

Ministry of Higher Education, Malaysia under the AMTEC-HICoE Grant Scheme Phase II

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3