Exploring the Operation Factors that Influence Performance of a Spiral-Wound Forward Osmosis Membrane Process for Scale-up Design

Author:

Lee Sungyun

Abstract

Forward osmosis (FO) technology has increasingly attracted attention owing to its low operational energy and low fouling propensity. Despite extensive investigations on FO, very few module-scale FO studies on the operation and design of the FO process have been conducted. In this paper, a simple and practical FO process design parameter called normalized membrane area is suggested based on a performance analysis of spiral-wound FO elements. The influence of operation factors on operating pressures and water recovery was investigated using 8-inch spiral wound elements in the continuous operation mode. The membrane area was adjusted by series connection of FO elements to a maximum value of 46 m2 (three elements). The feed and draw flow rates were varied between 5 and 15 LPM under various feed (10, 20, and 30 g/L) and draw (58.4 and 233.8 g/L) concentration combinations. The analysis of flow rates (feed, draw, and permeate flow rates) indicated not only high flow channel resistance on the draw side but also high permeate flow rates can induce higher operating pressures owing to strong mutual interaction of the feed and the draw streams. Feed water recovery was focused on as a key performance index, and the experimental recovery (RExp) and theoretical maximum recovery (RTh) values were compared. The results revealed the significance of the feed flow rate and the membrane area in terms of enhancing the water recovery performance. In addition, a clear relationship was observed between the membrane area normalized by the initial feed flow rates and the water recovery ratio (RExp/RTh), even though the applied operation conditions were different. Finally, an empirical equation to estimate the required membrane area of spiral-wound FO was proposed for the FO process design. The equation can be used to predict water recovery of FO systems as well, for example, if an FO system is operated at 0.08 m2L−1h of the normalized membrane area, the system is expected to offer 78% of the RTh value.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3