Impact of Inorganic Ions and Organic Matter on the Removal of Trace Organic Contaminants by Combined Direct Contact Membrane Distillation–UV Photolysis

Author:

Tufail Arbab,Price William E.,Hai Faisal I.

Abstract

This study investigated the degradation of five trace organic contaminants (TrOCs) by integrated direct contact membrane distillation (DCMD) and UV photolysis. Specifically, the influence of inorganic ions including halide, nitrate, and carbonate on the performance of the DCMD–UV process was evaluated. TrOC degradation improved in the presence of different concentrations (1–100 mM) of fluoride ion and chloride ion (1 mM). With a few exceptions, a major negative impact of iodide ion was observed on the removal of the investigated TrOCs. Of particular interest, nitrate ion significantly improved TrOC degradation, while bicarbonate ion exerted variable influence—from promoting to inhibiting impact—on TrOC degradation. The performance of DCMD–UV photolysis was also studied for TrOC degradation in the presence of natural organic matter, humic acid. Results indicated that at a concentration of 1 mg/L, humic acid improved the degradation of the phenolic contaminants (bisphenol A and oxybenzone) while it inhibited the degradation of the non-phenolic contaminants (sulfamethoxazole, carbamazepine, and diclofenac). Overall, our study reports the varying impact of different inorganic and organic ions present in natural water on the degradation of TrOCs by integrated DCMD–UV photolysis: the nature and extent of the impact of the ions depend on the type of TrOCs and the concentration of the interfering ions.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3