Effect of Composition and Viscosity of Spinning Solution on Ultrafiltration Properties of Polyphenylene Sulfone Hollow-Fiber Membranes

Author:

Anokhina Tatyana,Raeva Alisa,Sokolov StepanORCID,Storchun Alexandra,Filatova Marina,Zhansitov AzamatORCID,Kurdanova Zhanna,Shakhmurzova Kamila,Khashirova Svetlana,Borisov IlyaORCID

Abstract

In this work, PPSUs with different molecular weights were synthesized for the development of highly permeable ultrafiltration hollow fiber membranes for the first time. The MW of the synthesized polymers was controlled by varying the monomers molar ratio within 1:1–1.15 under the same synthesis conditions. Based on the study of the rheological properties of polymer solutions, a high molecular weight PPSU (MW = 102,000 g/mol) was chosen for the formation of hollow fiber membranes. The addition of PEG400 to the spinning solution led to an increase in viscosity, which makes it possible to work in the region of lower PPSU concentrations (18–20 wt. %) and to form membranes with a less dense porous structure. With the addition of PEG400 to the spinning solution, the membrane permeance increased sharply by more than two orders of magnitude (from 0.2 to 96 L/m2·h bar). At the same time, the membranes had high rejection coefficients (99.9%) of Blue Dextran model filtered substance (MW = 69,000 g/mol).

Funder

Russian Science Foundation, Russia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3