Bioselective PES Membranes Based on Chitosan Functionalization and Virus-Imprinted NanoMIPs for Highly Efficient Separation of Human Pathogenic Viruses from Water

Author:

Olivares Moreno Carmen Andreina,Altintas ZeynepORCID

Abstract

Waterborne viruses are a public health concern due to relatively small infection doses. Particularly, adenoviruses (AdVs) are more resistant than RNA viruses to water purification treatments in terms of ultraviolet (UV) irradiation, pH, and chlorination tolerance. Moreover, AdVs are one of the most predominant waterborne viruses. Membrane separations have proven superior removal capabilities of waterborne pathogens over other separation methods. However, virus removal at ultratrace levels is still a significant challenge for current membrane technology. This study successfully addressed this challenge by developing a bioselective polyethersulfone (PES) membrane by a joint strategy involving chitosan hydrophilic surface modification and the immobilization of adenovirus-specific molecularly imprinted nanoparticles (nanoMIPs). The topological and chemical changes taking place on the membrane surface were characterized by using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, hydrophilicity and membrane performance were investigated in terms of swelling behavior, permeation flux, and surface fouling studies. The membrane efficacy was evaluated by filtration experiments, where the virus concentration of the loading solution before filtration and the permeates after filtration was quantified. The novel bioselective membrane showed excellent virus removal capabilities by separating 99.99% of the viruses from the water samples.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference30 articles.

1. Potable Water Quality Standards and Regulations: A Historical and World Overview;Younos;Potable Water,2014

2. Griffiths, J.K. Waterborne Diseases. International Encyclopedia of Public Health, 2017.

3. University of Delaware. New Technology Removes Viruses From Drinking Water, 2022.

4. Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools;Fong;Microbiol. Mol. Biol. Rev.,2005

5. Waterborne enteroviruses as a hazard for human health;Kocwa-Haluch;Pol. J. Environ. Stud.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3