Effect of Electrode Morphology on Performance of Ionic Actuators Based on Vat Photopolymerized Membranes

Author:

Morozov Oleg S.ORCID,Ivanchenko Anna V.,Nechausov Sergey S.,Bulgakov Boris A.

Abstract

Bucky gel electrodes are composed of morphology-determining polyvinylidene difluoride (PVDF) filled with carbon nanotubes (CNT). The electrodes are commonly fabricated via the casting of a CNT dispersion containing PVDF and ionic liquid. In this study, several pore-forming additives such as polyethylene glycol (PEG), dibutyl phthalate (DBP), and the common ionic liquid BMIMBF4 were used to control the morphology of the bucky gel electrodes. The crystalline phase type and content of PVDF in the electrodes were determined by FT-IR and DSC, respectively. SEM revealed a sponge-like structure in the case of the use of BMIMBF4 and a spherulite structure if PEG and DBP were used as additives. A strong influence of morphology on the anisotropic increase in the volume of electrodes upon impregnation with electrolyte was observed. The PEG-based electrode elongated more than the others, while the BMIMBF4-based electrode thickened to a greater extent. Ionic actuators were fabricated to experimentally reveal the effect of electrode morphology on their electromechanical efficiency. A high-precision vat photopolymerization technique was used to fabricate identical ionic membranes and minimize their influence on the properties of the actuators. The electrodes were characterized by the same porosity and electrical capacitance, while the actuators differ significantly in performance. As a result, a simple method of using pore-forming additives made it possible to increase the maximum deformation of bucky gel ionic actuators by 1.5 times by changing the morphology of the electrodes.

Funder

RFBR

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3