Novel Hydrophobic Ultrafiltration Membranes for Treatment of Oil-Contaminated Wastewater

Author:

Hliavitskaya Tatsiana1,Plisko Tatiana1ORCID,Bildyukevich Alexandr1ORCID,Liubimova Alena1,Shumskaya Alena2ORCID,Mikchalko Alexey3,Rogachev Alexandr A.23,Melnikova Galina B.4ORCID,Pratsenko Svetlana A.1

Affiliation:

1. Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus

2. Institute of Chemistry of New Materials, 220141 Minsk, Belarus

3. F. Skorina Gomel State University, 246019 Gomel, Belarus

4. Lykov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus

Abstract

Cutting fluids are the main source of oily wastewater in the metalworking industry. This study deals with the development of antifouling composite hydrophobic membranes for treatment of oily wastewater. The novelty of this study is that a low energy electron-beam deposition technique was applied for a polysulfone (PSf) membrane with a molecular-weight cut-off of 300 kDa, which is promising for use in the treatment of oil-contaminated wastewater, by using polytetrafluoroethylene (PTFE) as target materials. The effect of the thickness of the PTFE layer (45, 660, and 1350 nm) on the structure, composition, and hydrophilicity of membranes was investigated using scanning electron microscopy, water contact angle (WCA) measurements, atomic force microscopy, and FTIR-spectroscopy. The separation and antifouling performance of the reference and modified membranes were evaluated during ultrafiltration of cutting fluid emulsions. It was found that the increase in the PTFE layer thickness results in the significant increase in WCA (from 56° up to 110–123° for the reference and modified membranes respectively) and decrease in surface roughness. It was found that cutting fluid emulsion flux of modified membranes was similar to the flux of the reference PSf-membrane (7.5–12.4 L·m−2·h−1 at 6 bar) while cutting fluid rejection (RCF) of modified membranes increased compared to the reference membrane (RCF = 58.4–93.3% for modified and RCF = 13% for the reference PSf membrane). It was established that despite the similar flux of cutting fluid emulsion, modified membranes demonstrate 5–6.5 times higher flux recovery ratio (FRR) compared to the reference membrane. The developed hydrophobic membranes were found to be highly efficient in oily wastewater treatment.

Funder

Belarusian Republican Foundation for Fundamental Research

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3