Multifractal Analysis of the Influence of Indole-3-Acetic Acid on Fast-Activating Vacuolar (FV) Channels of Beta vulgaris L. Taproot Cells

Author:

Miśkiewicz Janusz12ORCID,Burdach Zbigniew3ORCID,Trela Zenon2,Siemieniuk Agnieszka3ORCID,Karcz Waldemar3ORCID

Affiliation:

1. Institute of Theoretical Physics, University of Wrocław, 50-204 Wrocław, Poland

2. Physics and Biophysics Department, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland

3. Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland

Abstract

In this paper, the multifractal properties of the ion current time series in the fast-activating vacuolar (FV) channels of Beta vulgaris L. taproot cells were investigated. These channels are permeable for only monovalent cations and mediate K+ at very low concentrations of cytosolic Ca2+ and large voltages of either polarity. Using the patch clamp technique, the currents of the FV channels in red beet taproot vacuoles were recorded and analysed by using the multifractal detrended fluctuation analysis (MFDFA) method. The activity of the FV channels depended on the external potential and was sensitive to the auxin. It was also shown that the singularity spectrum of the ion current in the FV channels is non-singular, and the multifractal parameters, i.e., the generalised Hurst exponent and the singularity spectrum, were modified in the presence of IAA. Taking into account the obtained results, it can be suggested that the multifractal properties of fast-activating vacuolar (FV) K+ channels, indicating the existence of long-term memory, should be taken into account in the molecular mechanism of the auxin-induced growth of plant cells.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3