A Selective Separation Mechanism for Mono/divalent Cations and Properties of a Hollow-Fiber Composite Nanofiltration Membrane Having a Positively Charged Surface

Author:

Wang Enlin1,Lv Xinghua1,Liu Shaoxiao1,Dong Qiang1,Li Jiayue1,Li Honghai2,Su Baowei1ORCID

Affiliation:

1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China

2. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266045, China

Abstract

Positively charged nanofiltration (NF) technology is considered a green and low-cost method for mono/divalent cation separation. Nevertheless, the separation rejection mechanisms of these NF membranes have yet to be extensively investigated. In this work, we fabricated a thin-film composite (TFC) hollow-fiber (HF) NF membrane with a positively charged surface via modification of the nascent interfacial polymerization layer using a branched polyethyleneimine (BPEI)/ethanol solution. Then, we extensively investigated its selective separation mechanism for mono/divalent cations. We proposed and proved that there exists a double-charged layer near the membrane surface, which helps to repel the divalent cations selectively via Donnan exclusion while promoting the fast penetration of monovalent cations. Meanwhile, the membrane skin layer is loose and hydrophilic due to the loose BPEI structure and the abundance of amine groups, as well as the changed fabrication conditions. In this way, we achieved very good mono/divalent cation selectivity and relatively high water permeance for the as-prepared HF NF membrane. We also obtained good anti-fouling, anti-scaling, and acid resistance, and long-term stability as well, which are urgently needed during practical application. Furthermore, we successfully amplified this HF NF membrane and proved that it has broad application prospects in mono/divalent cation separation.

Funder

Key Project Fund of Science and Technology of Shandong Province

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3